A-LEVEL

Mathematics

Decision 1 - MD01
Mark scheme

June 2015

Version/Stage: Version 1.0 : Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]
Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Jor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
$\mathbf{1}$	I Path starting $D-2+A$ or $5-A+2$ Path starting $E-3+B$ or $6-F+4$ $D-2+A-5$ $E-3+B-4+F-6$	M1		Paths should be listed, but allow on diagram provided one path per diagram and start/end clearly labelled. Or reverse Or reverse
	Or II Path starting $D-2+A$ or $6-F+4$ followed by Path starting $E-3+C$ or $5-A+1$ $D-2+A-1+C-3+B-4+F-6$ followed by $E-3+C-1+A-5$ Or A1 A1 Path starting $E-3+B$ or $5-A+2$ followed by Path starting $D-2+B$ or $6-F+4$ $E-3+B-2+A-5$ followed by $D-2+B-4+F-6$ Matching $A 5, B 4, C 1, D 2, E 3, F 6$	(M1)		Or reverse

Notes:

For II and III the paths MUST be in the order stated. If order is reversed then the max mark is M0A0M1A1 Watch for alternative, but correct, notation (needs to be clear).
If using a diagram, two paths indicated on one diagram will score M0.
Use of one long path, usually by attempting to combine two shorter ones, can earn a max of M1 A0 M0.

Q4	Solution	Mark	Total	Comment
4 (a) (i)	Route ABEHFJ or reverse$\begin{aligned} & 12+19+3 \text { (= 34) } \\ & 11.04 \text { (a.m.) } \end{aligned}$			
		M1 A1		Use of Dijkstra; two values at E and one at each of G and H Correct values only at E
		m1		2 values at each of D, F and I.
		A1		Completely correct including all crossing out and boxing
		B1	5	19 at J. If stated in text as well, diagram takes precedence.
(ii)		B1	1	Must be listed, not just marked on diagram.
(b)		M1		Their final values for $A D$ and $A J+3$
		A1F	2	11.04 unsupported scores $2 / 2$
			8	

Q5	Solution	Mark	Total	Comment			
5 (a)	$A B+C G=(50+240)=290$ $A C+B G=(100+230)=330$	M1	5	These 3 pairs stated including the intention to add 3 correct totals, 2 correct totals Of three totals PI CSO Must include units			
	$A G+B C=(210+70)=280$	A2,1					
	$\begin{aligned} \text { Solution } & =1400+\text { their min total } \\ & =1680 \mathrm{~m} \end{aligned}$	m1					
		A1					
(b)(i)(ii)	3	B1					
	3	B1	2				
Total			7				
Notes: For 5(a), SC if M0 scored then 1680 m scores $2 / 5$. Must include units. For 5(a), SC if M0 scored then 1680 scores $1 / 5$ (no units)							

Notes: (a) An answer of 3, 4, 5, 6 scores B0 as 2 correct and 2 incorrect answers.

Q9	Solution	Mark	Total	Comment
9 (a)	$\begin{aligned} & 400 x+400 y+600 z \leq 130000 \\ & (2 x+2 y+3 z \leq 650) \end{aligned}$	B1		OE
	$\begin{aligned} & 200 x+500 y+200 z \leq 70000 \\ & (2 x+5 y+2 z \leq 700) \end{aligned}$	B1		OE
	$\begin{aligned} & 400 x+100 y+200 z \leq 72000 \\ & (4 x+y+2 z \leq 720) \end{aligned}$	B1		OE
	$z \geq 75$	B1	4	OE but z terms must be collected
(b)	$\begin{aligned} & \text { Substitute } z=x+y \\ & 2 x+2 y+3 z \leq 650 \Rightarrow 5 x+5 y \leq 650 \end{aligned}$	M1		
	$\begin{gathered} \Rightarrow x+y \leq 130 \\ 2 x+5 y+2 z \leq 700 \Rightarrow 4 x+7 y \leq 700 \\ 4 x+y+2 z \leq 720 \Rightarrow 6 x+3 y \leq 720 \end{gathered}$			of the first three inequalities
	$\begin{array}{r} \Rightarrow 2 x+y \leq 240 \\ z \geq 75 \Rightarrow x+y \geq 75 \end{array}$	A1	2	All correct. AG. (with middle line in $1^{\text {st }}$ and $3^{\text {rd }}$ inequalities)
(c)				All points correct to within $\pm 1 / 2$ a small square vertically and horizontally and lines ruled
	\cdots	B1		Line through (130,0) and (0,130)
		B1		Line through (175,0) and (0,100)
		B1		Line through (120,0) and (80,80)
	N	B1		Line through (75,0) and (0,75)
		B1	5	Feasible region correct and labelled, dep. on first B4
(d)	$\begin{aligned} & (P=) 50 x+100 y+150 z \\ & (P=) 200 x+250 y \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Pl or seen ISW
(e) (i)	Either OL drawn with gradient -0.8	M1		Condone gradient of $-\frac{a}{b}$ or $-\frac{b}{a}$ from their final answer for part (d) $a x+b y$
	$x=70, y=60$	$\begin{gathered} \text { A1 } \\ \text { CSO } \end{gathered}$		Dependent on gradient of -0.8
	or $\begin{array}{ll} (0,100) & P=£ 25000 \\ (70,60) & P=£ 29000 \\ (110,20) & P=£ 27000 \\ (120,0) & P=£ 24000 \end{array}$	(M1)		SCA Attempt to identify and list at least the four relevant vertices (OE from their hexagon) and attempt at finding some values of P.
	so max at $x=70, y=60$	$\begin{aligned} & \text { (A1 } \\ & \text { CSO) } \end{aligned}$	2	Must be clearly chosen from these four correct values
(ii)	$P=£ 29000$	B1		Including £
	70 tonnes Basic, 60 (tonnes) Premium, 130 (tonnes) Supreme	B1	2	All three correct, including units. (Not just $x=70, y=60$ and $z=130$.)
	Total		17	

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

